Matrix Theory

Exercise 1, Spring 2007

1. Let

$$
A(\alpha)=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

Prove that $A(\alpha+\beta)=A(\alpha) A(\beta)$. What matrix is $A(\alpha) A(-\alpha)$?
2. Let

$$
A=\left[\begin{array}{lll}
a & x & y \\
0 & b & z \\
0 & 0 & c
\end{array}\right],
$$

where $a, b, c \neq 0$. Calculate the inverse A^{-1} of A.
3. a) Show that $(A B)^{\mathbf{T}}=B^{\mathbf{T}} A^{\mathbf{T}}$ for every $A, B \in \mathbb{C}_{n \times n}$
b) Show that $(A x \mid y)=\left(x \mid A^{*} y\right)$ for every $A \in \mathbb{C}_{n \times n}$ and $x, y \in \mathbb{C}^{n}$, where $(x \mid y)$ is the inner product in C^{n}.
4. Show that if A, B, and $A+B$ are nonsingular, then also $A^{-1}+B^{-1}$ is nonsingular and

$$
(A+B)^{-1}=A^{-1}-A^{-1}\left(A^{-1}+B^{-1}\right)^{-1} A^{-1}
$$

5. Define a mapping $A: K^{n} \rightarrow K^{n}(K=\mathbb{R}$ or $\mathbb{C})$ such that

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}-x_{1}, \ldots, x_{n}-x_{n-1}\right)
$$

Show that the mapping A is linear. What is the dimension $\operatorname{dim} \mathcal{R}(A)$ of the range of A ?
6. Let $A: K^{n} \rightarrow K^{n}$ be a linear transformation. Show that the following conditions are equivalent:
(i) A is injective;
(ii) A is surjective;
(iii) A is bijective.
7. Suppose that $V=\{x \mid x$ on kuvaus $\mathbb{R} \rightarrow \mathbb{R}\}$ and define a mapping $P: V \rightarrow V$ such that

$$
P x(t)=\frac{1}{2}(x(t)+x(-t)), \quad \text { for every } x \in V, t \in \mathbb{R}
$$

Show that P is a projection. What is the direct sum $\mathcal{N}(P) \oplus \mathcal{R}(P)$?
8. Let $P, Q: V \rightarrow V$ be projections for which $\mathcal{N}(P) \subseteq \mathcal{N}(Q)$. Show that $Q P=Q$.

Note. Problems 7 and 8 are point exercises.

