Matrix Theory

Exercise 2, Spring 2007

1. Let $\bar{z} \in K^{n}$ be a solution for $A \bar{x}=\bar{c}$, where $A \in K_{n \times n}$. Show that
(i) if $\bar{v} \in \mathcal{N}(A)$, then $\bar{z}+\bar{v}$ is also solution for the equation $A \bar{x}=\bar{c}$.
(ii) for every solution $\bar{x} \in K^{n}$ there exists $\bar{v} \in \mathcal{N}(A)$ such that $\bar{x}=\bar{z}+\bar{v}$.
2. Show that the determinant of the matrix $A=\left[\begin{array}{cc}B_{1} & C \\ 0 & B_{2}\end{array}\right]$, where B_{1} and B_{2} are square matrices, is $\operatorname{det} A=\operatorname{det} B_{1} \cdot \operatorname{det} B_{2}$.
(Hint. Present A in the form $A=C_{1} C_{2}$, where $C_{1}=\left[\begin{array}{cc}I & 0 \\ 0 & B_{2}\end{array}\right]$.)
3. Suppose that $A \in K_{m \times n}$ and $B \in K_{n \times m}$. Show that

$$
\left.\operatorname{det}\left[\begin{array}{cc}
0 & A \\
B & I
\end{array}\right]=\operatorname{det}(-A B) \quad \text { (i.e. }=(-1)^{m} \operatorname{det}(A B)\right)
$$

(Hint. Use the previous problem.)
4. So-called Gram determinant of the vectors $\bar{x}_{1}, \ldots, \bar{x}_{k} \in \mathbb{C}^{n}(k \leq n)$ is $G\left(\bar{x}_{1}, \ldots, \bar{x}_{k}\right)=$ $\operatorname{det}\left(A^{*} A\right)$, where $A=\left[\bar{x}_{1}, \ldots, \bar{x}_{k}\right]$ and $A^{*}=(\bar{A})^{\mathrm{T}}$. Show, by using BinetCauchy formula, that $G \geq 0$ always.
5. Suppose that $A=\left[a_{i j}\right]_{n \times n} \in K_{n \times n}$ is an upper triangular matric, where $a_{k k} \neq 0$ whenever $k=1,2, \ldots, n$. Show that the adjungate $\operatorname{adj} A$ and the inverse A^{-1} are upper triangular matrices.
6. Prove the following identity (so-called Cauchy identity):

$$
\operatorname{det}\left[\begin{array}{ll}
a_{1} c_{1}+\ldots+a_{n} c_{n} & a_{1} d_{1}+\ldots+a_{n} d_{n} \\
b_{1} c_{1}+\ldots+b_{n} c_{n} & b_{1} d_{1}+\ldots+b_{n} d_{n}
\end{array}\right]=\sum_{1 \leq i<j \leq n}\left|\begin{array}{ll}
a_{i} & a_{j} \\
b_{i} & b_{j}
\end{array}\right|\left|\begin{array}{cc}
c_{i} & c_{j} \\
d_{i} & d_{j}
\end{array}\right| .
$$

Show using the formula above that

$$
\left(\left|a_{1}\right|^{2}+\ldots+\left|a_{n}\right|^{2}\right)\left(\left|b_{1}\right|^{2}+\ldots+\left|b_{n}\right|^{2}\right) \geq\left|\left(a_{1} \bar{b}_{1}+\ldots+a_{n} \bar{b}_{n}\right)\right|^{2}
$$

for every $a_{i}, b_{i} \in \mathbb{C}$.
(Hint. Present the left side as a product of two matrices and use Binet-Cauchy formula.)

Note. Problems 5 and 6 are point exercises.

