1. Let $A \in K_{n \times n}$. Show that

(i) if
$$r(A) = n$$
, then $r(\operatorname{adj} A) = n$;

(ii) if r(A) = n - 1, then $r(\operatorname{adj} A) = 1$; **Hint.** Use the Sylvester's inequality $r(A \cdot \operatorname{adj} A) \ge r(A) + r(\operatorname{adj} A) - n$.

(iii) if
$$r(A) < n-1$$
, then $r(\operatorname{adj} A) = 0$.

2. Calculate the LU decomposition for the matrix

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 11 \end{bmatrix}$$

What is $\det A$?

- 3. Consider the matrix A in the preceding problem. Solve the equation $Ax = (1, 1, 1)^{T}$ by using the LU decomposition of A.
- 4. Suppose that all the principal minors of $A \in K_{n \times n}$ (including det A) are nonzero. Show that A = LDU, where D is an diagonal matrix, L and U are lower and upper triangular matrices, respectively, with diagonal entries equal to 1. What can you say about uniqueness of the decomposition?
- 5. Show that a matrix $A \in \mathbb{C}_{n \times n}$ is hermitian (i.e. $A^* = A$) if and only if (Ax|y) = (x|Ay) for every $x, y \in \mathbb{C}^n$.
- 6. Let $A \in \mathbb{C}_{n \times n}$. Show that if $x^*Ax = 0$ for every $x \in \mathbb{C}^n$, then $A = 0 \in \mathbb{C}_{n \times n}$. **Hint.** Use the vectors e_i , $e_i + e_j$ and $e_i + ie_j$.
- 7. A matrix $A \in \mathbb{C}_{n \times n}$ is called unitary if $A^* = A^{-1}$, i.e. $A^*A = I$. Show, by using problem 5, that A is unitary if and only if (Ax|Ax) = (x|x) for every $x \in \mathbb{C}^n$.

Note. You may choose two of the problems 5, 6 and 6 as point exercises. By doing all three problems 5, 6 and 6, you can compensate one undone point problem.