Matrix Theory

Exercise 3, Spring 2007

1. Let $A \in K_{n \times n}$. Show that
(i) if $r(A)=n$, then $r(\operatorname{adj} A)=n$;
(ii) if $r(A)=n-1$, then $r(\operatorname{adj} A)=1$;

Hint. Use the Sylvester's inequality $r(A \cdot \operatorname{adj} A) \geq r(A)+r(\operatorname{adj} A)-n$.
(iii) if $r(A)<n-1$, then $r(\operatorname{adj} A)=0$.
2. Calculate the $L U$ decomposition for the matrix

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 11
\end{array}\right]
$$

What is $\operatorname{det} A ?$
3. Consider the matrix A in the preceding problem. Solve the equation $A x=$ $(1,1,1)^{\mathrm{T}}$ by using the $L U$ decomposition of A.
4. Suppose that all the principal minors of $A \in K_{n \times n}($ including $\operatorname{det} A)$ are nonzero. Show that $A=L D U$, where D is an diagonal matrix, L and U are lower and upper triangular matrices, respectively, with diagonal entries equal to 1 . What can you say about uniqueness of the decompostion?
5. Show that a matrix $A \in \mathbb{C}_{n \times n}$ is hermitian (i.e. $A^{*}=A$) if and only if $(A x \mid y)=$ $(x \mid A y)$ for every $x, y \in \mathbb{C}^{n}$.
6. Let $A \in \mathbb{C}_{n \times n}$. Show that if $x^{*} A x=0$ for every $x \in \mathbb{C}^{n}$, then $A=0 \in \mathbb{C}_{n \times n}$.

Hint. Use the vectors $e_{i}, e_{i}+e_{j}$ and $e_{i}+\mathrm{i} e_{j}$.
7. A matrix $A \in \mathbb{C}_{n \times n}$ is called unitary if $A^{*}=A^{-1}$, i.e. $A^{*} A=I$. Show, by using problem 5 , that A is unitary if and only if $(A x \mid A x)=(x \mid x)$ for every $x \in \mathbb{C}^{n}$.

Note. You may choose two of the problems 5, 6 and 6 as point exercises. By doing all three problems 5, 6 and 6 , you can compensate one undone point problem.

