Matrix Theory

Exercise 4, Spring 2007

1. Let $A: V \rightarrow V$ be a linear transformation. Show that if for some vector $x_{0} \in V$ $\left(x_{0} \neq \overline{0}\right)$ we have

$$
A x_{0}=\lambda x_{0}
$$

where $\lambda \in K$, then the subspace $S=\mathcal{L}\left\{x_{0}\right\}$ is A-invariant.
2. Calculate the characteristic polynomial of the matrix

$$
A=\left[\begin{array}{ccc}
8 & 2 & -2 \\
3 & 3 & -1 \\
24 & 8 & -6
\end{array}\right]
$$

by using
(i) $\operatorname{det}(\lambda I-A)$ and
(ii) the principal minors of A.

What is the spectrum $\sigma(A)$ of A and the corresponding eigenvectors.
3. Let $A \in \mathbb{C}_{n \times n}$. Show that the following are equivalent:
(a) A is unitary;
(b) $(A x \mid A y)=(x \mid y)$ for every $x, y \in \mathbb{C}^{n}$;
(c) columns of A are ortonormal;
(d) rows of A are ortonormal.
(Hint. In (c) ja (d), look the (i, j)-entries in the matrices $A^{*} A$ and $A A^{*}$ by using inner product.)
4. Suppose that $A \in \mathbb{C}_{n \times n}$ is unitary. Show that $|\lambda|=1$ for every eigenvalue $\lambda \in \mathbb{C}$ of A. Show that $|\operatorname{det} A|=1$.
5. Show that if $A \in K_{n \times n}$ is hermitian (i.e. $A^{*}=A$) and positive definite (i.e. $x^{*} A x>0$ for every $\left.x \in K^{n} \backslash\{\overline{0}\}\right)$, then $\operatorname{det} A>0$.
(Hint. Take eigenvectors.)
6. Show that the eigenvalues of a hermitian matrix are real and eigenvectors corresponding to distinct eigenvalues are ortogonaaliset.
(Hint. Show first that $\lambda=\bar{\lambda}$ for every eigenvalue λ.)
7. Let $T: V \rightarrow V$ be a linear transformation and $\operatorname{dim} V=n$. Suppose that $S \subseteq V$ is a T-invariant subspace for which $\operatorname{dim} S=r$. Show that then the matrix represenation A of T can be written as

$$
A=\left[\begin{array}{cc}
A_{1} & B \\
0 & A_{2}
\end{array}\right]
$$

where $A_{1} \in K_{r \times r}$ and $A_{2} \in K_{(n-r) \times(n-r)}$.
(Hint. Take V to be a direct sum $S \oplus S^{\prime}$. Note that S^{\prime} is not necessarily T invariant.)
(All the vector spaces are assumed to be finite dimensional.)

Note. Problems 6 and 7 are point exercises.

