Matrix Theory

Exercise 4, Spring 2007

1. Let $A: V \to V$ be a linear transformation. Show that if for some vector $x_0 \in V$ $(x_0 \neq \overline{0})$ we have

$$Ax_0 = \lambda x_0,$$

where $\lambda \in K$, then the subspace $S = \mathcal{L}\{x_0\}$ is A-invariant.

2. Calculate the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 8 & 2 & -2 \\ 3 & 3 & -1 \\ 24 & 8 & -6 \end{bmatrix}$$

by using

- (i) $det(\lambda I A)$ and
- (ii) the principal minors of A.

What is the spectrum $\sigma(A)$ of A and the corresponding eigenvectors.

- 3. Let $A \in \mathbb{C}_{n \times n}$. Show that the following are equivalent:
 - (a) A is unitary;
 - (b) (Ax|Ay) = (x|y) for every $x, y \in \mathbb{C}^n$;
 - (c) columns of A are ortonormal;
 - (d) rows of A are ortonormal.

(Hint. In (c) ja (d), look the (i, j)-entries in the matrices A^*A and AA^* by using inner product.)

- 4. Suppose that $A \in \mathbb{C}_{n \times n}$ is unitary. Show that $|\lambda| = 1$ for every eigenvalue $\lambda \in \mathbb{C}$ of A. Show that $|\det A| = 1$.
- 5. Show that if $A \in K_{n \times n}$ is hermitian (i.e. $A^* = A$) and positive definite (i.e. $x^*Ax > 0$ for every $x \in K^n \setminus \{\overline{0}\}$), then det A > 0.

(Hint. Take eigenvectors.)

6. Show that the eigenvalues of a hermitian matrix are real and eigenvectors corresponding to distinct eigenvalues are ortogonaaliset.

(**Hint.** Show first that $\lambda = \overline{\lambda}$ for every eigenvalue λ .)

7. Let $T: V \to V$ be a linear transformation and dim V = n. Suppose that $S \subseteq V$ is a *T*-invariant subspace for which dim S = r. Show that then the matrix representation A of T can be written as

$$A = \begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},$$

where $A_1 \in K_{r \times r}$ and $A_2 \in K_{(n-r) \times (n-r)}$.

(**Hint.** Take V to be a direct sum $S \oplus S'$. Note that S' is not necessarily T-invariant.)

(All the vector spaces are assumed to be finite dimensional.)

Note. Problems 6 and 7 are point exercises.