Matrix Theory

Exercise 5, spring 2007

1. Show that eigenvectors of $A \in K_{n \times n}$ corresponding to distinct eigenvalues are linearly independent.
2. Find eigenvalues of $A^{k}+3 A+2 I(k=1,2, \ldots)$ where

$$
A=\left[\begin{array}{ccc}
8 & 2 & -2 \\
3 & 3 & -1 \\
24 & 8 & -6
\end{array}\right]
$$

(Hint. Find eigenvalues of A (see Exercise 4, problem 2.))
3. When 2×2-matrix is diagonalizable (i.e., simple in terms of Lancaster \& Tismenentsky)?
4. Assume that matrices $A \in K_{n \times n}$ and $B \in K_{n \times n}$ are similar. Show that
(a) $\operatorname{det} A=\operatorname{det} B$ and $r(A)=r(B)$;
(b) $c_{A}(\lambda)=c_{B}(\lambda)$ and $\operatorname{tr} A=\operatorname{tr} B$;
(c) $A^{\mathbf{T}}$ ja $B^{\mathbf{T}}$ are similar;
(d) $p(A)$ ja $p(B)$ are similar whenever $p(\lambda)$ is skalar polynomial.

Furthermore, show that matrices $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are not similar although their ranks, determinants, characteristic polynomials and traces are equal.
5. Suppose that matrices A and B are diagonalizable. Show that A and B are similar if and only if $c_{A}(\lambda)=c_{B}(\lambda)$. (See previous problem.)
6. Let $A \in K_{n \times n}$. Show that the eigenvalues corresponding to the left eigenvectors of A are the same as the eigenvalues corresponding to right eigenvectors of A. (That is, we do not need to consider left and right eigenvalues.)
7. Show that the $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ is diagonalizable and find the projections $G_{j}=x_{j} y_{j}^{\mathrm{T}}$ in the Spectral Theorem (Theorem 3.30). Calculate A^{20} using the Spectral Theorem.
8. Show that matrices $A B$ and $B A$ have the same characteristic polynomial whenever $A, B \in \mathbb{C}_{n \times n}$.
(Hint. Use the equation

$$
\underbrace{\left[\begin{array}{cc}
A B & 0 \\
B & 0
\end{array}\right]}_{E}\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right] \underbrace{\left[\begin{array}{cc}
0 & 0 \\
B & B A
\end{array}\right]}_{F}
$$

and show that E and F are similar.)

Note. Problems 7 and 8 are point exercises.

