Matrix Theory

Exercise 6, Spring 2007

1. Consider the following matrix:

$$
A=\left[\begin{array}{lll}
2 & 0 & 4 \\
0 & 6 & 0 \\
4 & 0 & 2
\end{array}\right]
$$

Is A diagonalizable (i.e. simple)? Is A unitarily similar to some diagonal matrix? Is A normal?
2. Let $\lambda_{1}=-1, \lambda_{2}=1$ ja $\lambda_{3}=0$ be eigenvalues of a matrix A and $x_{1}=(-1,1,1)^{\mathbf{T}}$, $x_{2}=(-1,4,1)^{\mathbf{T}}$ and $x_{3}=(1,2,1)^{\mathbf{T}}$ their corresponding eigenvectors. Define the matrix A.
3. Let $A \in K_{n \times n}$ be an idempotent matrix (i.e. projection), that is, $A^{2}=A$.
(a) Show that if λ is an eigenvalue of A, then $\lambda=0$ or $\lambda=1$.
(b) If x is an eigenvector of A corresponding to ann eigenvalue λ, calculate $A^{200} x$.
4. Let $A \in \mathbb{C}_{n \times n}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its eigenvalues. Show that
(a) $A^{*} A$ is hermitian;
(b) $\operatorname{tr}\left(A^{*} A\right)=\sum_{i, j}\left|a_{i j}\right|^{2}$;
(c) $\left|\lambda_{1}\right|^{2}+\ldots+\left|\lambda_{n}\right|^{2} \leq \sum_{i, j}\left|a_{i j}\right|^{2}=\operatorname{tr}\left(A^{*} A\right)$.
(Hint. Use Schur Decomposition, i.e. the fact that every matrix is unitarily similar to some upper triangular matrix.)
5. Let $A=I-\alpha x x^{*}$, where $x \in \mathbb{C}^{n} \backslash\{\overline{0}\}$ and $\alpha=2 /\|x\|^{2}$ (reminder: $\|x\|^{2}=$ $\left.(x \mid x)=x^{*} x\right)$. Show that the matrix A is hermitian and unitary.

Show that $\lambda=-1$ is an eigenvalue of A and the corresponding eigenvector is x.
6. Consider the matrix $A \in \mathbb{C}_{2 \times 2} 1$. Show that there exists a matrix B such that $B^{2}=A$. Can the result be generalized for any diagonalizable (i.e. simple) matrix $A \in \mathbb{C}_{n \times n}$?
(Hint. Use the decomposition $A=C D C^{-1}$ for diagonalizable matrices to define B.)
7. Let $A \in \mathbb{R}_{n \times n}$ be a symmetric and let r be its smallest and R its biggest eigenvalue. Show that

$$
r \leq x^{\mathbf{T}} A x \leq R
$$

whenever $x \in \mathbb{R}^{n}$ and $\|x\|=1$. Formulate the result for hermitian matrix $A \in \mathbb{C}_{n \times n}$.
(Hint. Use the fact that A has now n orthonormal eigenvectors.)

You may choose two of the problems 5, 6 and 6 as point exercises. By doing all three problems (5, 6 and 6), you can compensate one undone point problem.

