COMPLEX ANALYSIS I

Exercise 3, spring 2011

1. Let $\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right|>r\right\}\right.$. Show that A is open.
2. Let $A=\left\{i, \frac{i}{2}, \frac{i}{3}, \cdots\right\} \subset \mathbb{C}$. Is A bounded, closed, open? Find A^{0}, A^{\prime} and $c l(A)$.
3. Find the line running through the points $1+i$ and $-3+2 i$
a) in a parametric form,
b) in the form $a x+b y=d, a, b, d \in \mathbb{R}$,
c) in the form $\bar{a} z+\alpha \bar{z}=\gamma, \alpha \in \mathbb{C}$ ja $\gamma \in \mathbb{R}$.

Find also a path joining the points $1+i,-3+2 i$.
4. Find the limits (if they exist)
a) $\lim _{n \rightarrow \infty} \frac{i^{n}}{n}$,
b) $\lim _{n \rightarrow \infty} i^{n}$,
c) $\lim _{n \rightarrow \infty} \frac{(1+i)^{n}}{n}$,
d) $\lim _{n \rightarrow \infty} \frac{2 n-i n^{2}}{(1+i) n^{-1}}$.
5. Let $\left(a_{n}\right) \mathbb{C}$ be a sequence with $\lim _{n \rightarrow \infty} a_{n}=a$. Show that $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded.
6. Show that $\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}=e^{x}(\cos y+i \sin y)$, when $z=x+i y \in \mathbb{C}$.

