COMPLEX ANALYSIS I

Exercise 3, spring 2011

- 1. Let $\{z \in \mathbb{C} | |z z_0| > r\}$. Show that A is open.
- 2. Let $A = \{i, \frac{i}{2}, \frac{i}{3}, \dots\} \subset \mathbb{C}$. Is A bounded, closed, open? Find A^0, A' and cl(A).
- 3. Find the line running through the points 1 + i and -3 + 2i
 a) in a parametric form,
 b) in the form ax + by = d, a, b, d ∈ ℝ,
 c) in the form āz + αz̄ = γ, α ∈ C ja γ ∈ ℝ.
 Find also a path joining the points 1 + i, -3 + 2i.
- 4. Find the limits (if they exist)

a)
$$\lim_{n \to \infty} \frac{i^n}{n}$$
, b) $\lim_{n \to \infty} i^n$, c) $\lim_{n \to \infty} \frac{(1+i)^n}{n}$, d) $\lim_{n \to \infty} \frac{2n - in^2}{(1+i)n^{-1}}$

- 5. Let $(a_n)\mathbb{C}$ be a sequence with $\lim_{n\to\infty} a_n = a$. Show that $(a_n)_{n=1}^{\infty}$ is bounded.
- 6. Show that $\lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = e^x(\cos y + i \sin y)$, when $z = x + iy \in \mathbb{C}$.