COMPLEX ANALYSIS I

Exercise 4, spring 2011

1. Let $\left(z_{n}\right)$ be a sequence with $z_{0}=3$ and $z_{n+1}=\frac{1}{3} z_{n}+2 i$. Show that $\left(z_{n}\right)$ has a limit and find it.
2. Find which of the following functions are bijenctions $\mathcal{M}(f) \rightarrow \mathcal{A}(f)$ and find $f^{-1}: \mathcal{A}(f) \rightarrow \mathcal{M}(f)$ (if possible).
a) $f(z)=\bar{z}+i, z \in \mathbb{C}$,
b) $f(z)=\frac{1}{z}, z \in \mathbb{C} \backslash\{0\}$,
c) $f(z)=z^{2}+i, z \in \mathbb{C}$,
d) $f(z)=z^{2}+i, z \in S[0, \pi)$.
3. Let $f: S\left[0, \frac{2 \pi}{3}\right) \rightarrow \mathbb{C}$ a function with $f(z)=z^{3}+i, z \in S\left[0, \frac{2 \pi}{3}\right)$. Show that f is a bijection $\mathcal{M}(f) \rightarrow \mathbb{C}$ and find $f^{-1}(1)$.
4. Give the function $f(z)=f(x+i y)$ in the form $f(z)=u(x, y)+$ $i v(x, y), z \in \mathcal{M}(f)$, when
a) $f(z)=z^{3}, z \in \mathbb{C}$,
b) $f(z)=\frac{1}{z^{2}}, z \neq 0$,
c) $f(z)=e^{i z}, z \in \mathbb{C}$.
5. Show that the limit $\lim _{z \rightarrow z_{0}} f(z)=a$ of the function f is unique.
6. Find the function $f(z)$ limits in $z=0$, when
a) $f(z)=\frac{R e z}{z}$,
b) $f(z)=\frac{z}{|z|}$,
c) $f(z)=\frac{z R e z}{|z|}$.
