COMPLEX ANALYSIS I

Exercise 7, spring 2011

1. Show that the function

$$f(z) = \sin z$$

satisfies Cauchy-Riemann equations.

- 2. Let f be analytic on a region $A \subset \mathbb{C}$.
 - a) Suppose that f'(z) = 0 for all $z \in A$. Show that f is constant in A.
 - b) Suppose that f = u + iv and u is constant in A. Show that f is constant in A. Check also the case where $u^2 + v^2$ is constant in A.
- 3. Find f'(z), when
 - a) $f(z) = \cos(z^2 + iz)$, b) $f(z) = e^{\frac{1}{z}}$.

- 4. Find
 - a) $\log(-4)$, b) $\log 3i$, c) i^{2i} , d) i^{-i} .

- 5. Solve the equations
 - a) $e^z = 2 + i$, b) $\sin z = i$, c) $\cos z = 0$.

- 6. Find the limits
- a) $\lim_{z \to 0} \frac{e^{z^2} 1}{z^2 + 2z}$, b) $\lim_{z \to \frac{\pi}{2}} \frac{\cos z}{z \frac{\pi}{2}}$, c) $\lim_{z \to 0} \frac{\cos 2z 1}{\sin^2 z}$.
- 7. Show that $\sin \bar{z} = \overline{\sin z}, z \in \mathbb{C}$.