COMPLEX ANALYSIS II

Exercise 1, Spring 2011

1. Calculate

$$\int_{\gamma} \operatorname{Re} z dz \quad \text{and} \quad \int_{\gamma} \operatorname{Im} z dz,$$

where γ is

- a) the line segment from 1 + i to 2 i.
- b) The semicircle |z| = 1, $0 \leq \arg z \leq \pi$, with initial point 1.
- c) a-centered circle with radius $r, a \in \mathbb{C}, r > 0$.
- 2. Evaluate $\int_{\gamma} |z|^2 dz$ and $\int_{\gamma} |z|^2 |dz|$, where γ is the square $0 \to 1 \to 1 + i \to i \to 0$.
- 3. Let $w \in \mathbb{C}$ and $f : \mathbb{C} \setminus \{w\} \to \mathbb{C}$, $f(z) = \frac{1}{z-w}$. Calculate $\int_{\gamma} f(z)dz$, where $\gamma = \{w + re^{it} \mid t \in [0, 2\pi]\}, r > 0$. Does f have an antiderivative i.e is there a function F such that F' = f?
- 4. Find the antiderivatives of the following functions:

a)
$$f(z) = \sin z \cos z$$
 b) $f(z) = \sin 2z \cos z$
c) $f(z) = ze^{2z}$ d) $f(z) = z^2 \sin z$

Evaluate also $\int_{\gamma} e^z \sin z dz$, where $\gamma = \{2\pi \cos t + it^5 e^{t^3} \sin t \mid t \in [0, \pi] \}$.

5. Let γ be a piecewise smooth curve and f a continuous function on γ . Prove that

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz.$$

6. Let the assumptions be as in ex. 5. Show that

$$\left| \int_{\gamma} f(z) dz \right| \leqslant \int_{\gamma} |f(z)| \, |dz|.$$

HINT: Start by assuming that γ is smooth and choosing an appropriate constant $c \in \mathbb{C}$ such that $\left| \int_{\gamma} f(z) dz \right| = \int_{\gamma} cf(z) dz$.