Complex Analysis II

Exercise 1, Spring 2011

1. Calculate

$$
\int_{\gamma} \operatorname{Re} z d z \text { and } \int_{\gamma} \operatorname{Im} z d z
$$

where γ is
a) the line segment from $1+i$ to $2-i$.
b) The semicircle $|z|=1,0 \leqslant \arg z \leqslant \pi$, with initial point 1 .
c) a-centered circle with radius $r, a \in \mathbb{C}, r>0$.
2. Evaluate $\int_{\gamma}|z|^{2} d z$ and $\int_{\gamma}|z|^{2}|d z|$, where γ is the square $0 \rightarrow 1 \rightarrow 1+i \rightarrow i \rightarrow 0$.
3. Let $w \in \mathbb{C}$ and $f: \mathbb{C} \backslash\{w\} \rightarrow \mathbb{C}, f(z)=\frac{1}{z-w}$. Calculate $\int_{\gamma} f(z) d z$, where $\gamma=\left\{w+r e^{i t} \mid\right.$ $t \in[0,2 \pi]\}, r>0$. Does f have an antiderivative i.e is there a function F such that $F^{\prime}=f$?
4. Find the antiderivatives of the following functions:
a) $f(z)=\sin z \cos z$
b) $f(z)=\sin 2 z \cos z$
c) $f(z)=z e^{2 z}$
d) $f(z)=z^{2} \sin z$

Evaluate also $\int_{\gamma} e^{z} \sin z d z$, where $\gamma=\left\{2 \pi \cos t+i t^{5} e^{t^{3}} \sin t \mid t \in[0, \pi]\right\}$.
5. Let γ be a piecewise smooth curve and f a continuous function on γ. Prove that

$$
\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z
$$

6. Let the assumptions be as in ex. 5. Show that

$$
\left|\int_{\gamma} f(z) d z\right| \leqslant \int_{\gamma}|f(z)||d z| .
$$

HINT: Start by assuming that γ is smooth and choosing an appropriate constant $c \in \mathbb{C}$ such that $\left|\int_{\gamma} f(z) d z\right|=\int_{\gamma} c f(z) d z$.

