COMPLEX ANALYSIS II

Exercise 2, Spring 2011

1. Let γ be the unit circle. Calculate $\int_{\gamma} f(z) dz$, when

a)
$$f(z) = \frac{1}{z^2 + 2z + 2}$$
, b) $f(z) = \tan z$

2. Evaluate

$$\int_{\gamma} \frac{1}{(z-z_0)^n} dz, \ n = 2, 3...$$

where γ is a piecewise smooth Jordan-curve with

- a) $z_0 \in I(\gamma)$ (the interior of γ)
- b) $z_0 \in E(\gamma)$ (the exterior of γ .)
- 3. Show that

$$\int_{0}^{2\pi} e^{\cos t} \cos (t + \sin t) dt = 0 \text{ and } \int_{0}^{2\pi} e^{\cos t} \sin (t + \sin t) dt = 0.$$

4. Calculate

$$\int_{\gamma} \frac{1}{1+z^2} dz$$

where γ is the circle with

a) center i, radius 1, b) center -i, radius 1, c) center 0, radius 2. Hint: partial fraction decomposition.

- 5. Show that the sequence of triangles $\Delta, \Delta_1, \Delta_2, ..., \Delta_n, ...$ constructed in the proof of the Cauchy-Goursat Theorem have the following properties:
 - a) $\frac{|\partial \Delta_n|^2}{|\Delta_n|} = \frac{|\partial \Delta|^2}{|\Delta|}$ for every $n \in \mathbb{Z}_+$.

b) If for every $n \in \mathbb{Z}_+$ we choose an arbitrary point $z_n \in \Delta_n$, then the sequence (z_n) converges to some point z_0 .

c) Given $\delta > 0$, there exists $N \in \mathbb{Z}_+$ such that

$$\Delta_n \subset D_\delta(z_0)$$
 for every $n \ge N$.

d) The intersection $\bigcap_{n=1}^{\infty} \Delta_n$ consists of exactly one point.