Complex Analysis II

Exercise 2, Spring 2011

1. Let γ be the unit circle. Calculate $\int_{\gamma} f(z) d z$, when
a) $f(z)=\frac{1}{z^{2}+2 z+2}$,
b) $f(z)=\tan z$
2. Evaluate

$$
\int_{\gamma} \frac{1}{\left(z-z_{0}\right)^{n}} d z, n=2,3 \ldots
$$

where γ is a piecewise smooth Jordan-curve with
a) $z_{0} \in I(\gamma)$ (the interior of γ)
b) $z_{0} \in E(\gamma)$ (the exterior of γ.)
3. Show that

$$
\int_{0}^{2 \pi} e^{\cos t} \cos (t+\sin t) d t=0 \text { and } \int_{0}^{2 \pi} e^{\cos t} \sin (t+\sin t) d t=0
$$

4. Calculate

$$
\int_{\gamma} \frac{1}{1+z^{2}} d z
$$

where γ is the circle with
a) center i, radius 1, b) center $-i$, radius 1 , c) center 0 , radius 2 .

Hint: partial fraction decomposition.
5. Show that the sequence of triangles $\Delta, \Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}, \ldots$ constructed in the proof of the Cauchy-Goursat Theorem have the following properties:
a) $\frac{\left|\partial \Delta_{n}\right|^{2}}{\left|\Delta_{n}\right|}=\frac{|\partial \Delta|^{2}}{|\Delta|}$ for every $n \in \mathbb{Z}_{+}$.
b) If for every $n \in \mathbb{Z}_{+}$we choose an arbitrary point $z_{n} \in \Delta_{n}$, then the sequence (z_{n}) converges to some point z_{0}.
c) Given $\delta>0$, there exists $N \in \mathbb{Z}_{+}$such that

$$
\Delta_{n} \subset D_{\delta}\left(z_{0}\right) \quad \text { for every } n \geqslant N
$$

d) The intersection $\cap_{n=1}^{\infty} \Delta_{n}$ consists of exactly one point.

