Complex Analysis II

Exercise 4, Spring 2011

1. Suppose f is a function analytic in \mathbb{C} such that

$$
|f(z)| \leqslant\left|\frac{1+z}{1-z}\right|
$$

for every $z \in \mathbb{C}$. Show that f is a constant function.
2. Let γ be a piecewise smooth curve in \mathbb{C}. Suppose $\left(f_{n}\right)$ is a sequence of continuous functions on γ such that $f_{n} \rightarrow f$ uniformly on γ when $n \rightarrow \infty$. Show that

$$
\lim _{n \rightarrow \infty} \int_{\gamma} f_{n}(z) d z=\int_{\gamma} f(z) d z
$$

3. Does the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converge on the set $E \subset \mathbb{C}$, when
a) $f_{n}(z)=\frac{n z}{z+n}, E=D_{1}(0)$,
b) $f_{n}(z)=\frac{n z}{n z+1}, E=\{z \in \mathbb{C}:|z|>1\}$,
c) $f_{n}(z)=\sum_{k=0}^{n} z^{k}, E=D_{1}(0)$.

Is the convergence uniform on E ?
4. Study whether the following series converge:
a) $\sum_{n=1}^{\infty} \frac{e^{i n}}{n^{2}}$,
b) $\sum_{n=1}^{\infty} \frac{i^{n}}{n}$
c) $\sum_{n=1}^{\infty} \frac{\sin (n+i)}{n^{2}}$
d) $\sum_{n=1}^{\infty} n \sin \left(\frac{i}{n}\right)$.
5. For which $z \in \mathbb{C}$ the following series converge:
a) $\sum_{n=1}^{\infty} \frac{1}{n+|z|}$,
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+z}$,
c) $\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}}$.
6. Find the radius of convergence of the series

$$
\sum_{n=0}^{\infty}\left(\frac{1}{1-\frac{1}{2} i}\right)^{n+1}\left(z-\frac{1}{2} i\right)^{n}
$$

and calculate the sum.

