COMPLEX ANALYSIS II

Exercise 4, Spring 2011

1. Suppose f is a function analytic in \mathbb{C} such that

$$|f(z)| \leqslant \left|\frac{1+z}{1-z}\right|$$

for every $z \in \mathbb{C}$. Show that f is a constant function.

2. Let γ be a piecewise smooth curve in \mathbb{C} . Suppose (f_n) is a sequence of continuous functions on γ such that $f_n \to f$ uniformly on γ when $n \to \infty$. Show that

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} f(z) dz.$$

3. Does the sequence $(f_n)_{n=1}^{\infty}$ converge on the set $E \subset \mathbb{C}$, when

a)
$$f_n(z) = \frac{nz}{z+n}, \ E = D_1(0),$$

b)
$$f_n(z) = \frac{nz}{nz+1}, \ E = \{z \in \mathbb{C} : |z| > 1\},\$$

c)
$$f_n(z) = \sum_{k=0}^n z^k$$
, $E = D_1(0)$.

Is the convergence uniform on E ?

4. Study whether the following series converge:

a)
$$\sum_{n=1}^{\infty} \frac{e^{in}}{n^2}$$
, b) $\sum_{n=1}^{\infty} \frac{i^n}{n}$ c) $\sum_{n=1}^{\infty} \frac{\sin(n+i)}{n^2}$ d) $\sum_{n=1}^{\infty} n \sin\left(\frac{i}{n}\right)$.

5. For which $z \in \mathbb{C}$ the following series converge:

a)
$$\sum_{n=1}^{\infty} \frac{1}{n+|z|}$$
, b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+z}$, c) $\sum_{n=1}^{\infty} \frac{z^n}{1-z^n}$.

6. Find the radius of convergence of the series

$$\sum_{n=0}^{\infty} \left(\frac{1}{1-\frac{1}{2}i}\right)^{n+1} (z-\frac{1}{2}i)^n$$

and calculate the sum.