COMPLEX ANALYSIS II

Exercise 6, Spring 2011

1. Let h be an analytic function on a domain A. Suppose that a point $a \in A$ is an accumulation point of the set $E := \{w \in A : h(w) = 0\}$. On lectures, it was shown that then there exists an r > 0 such that $D_r(a) \subset E$.

Let $z_0 \in A$ be some accumulation point of E and $\gamma = \{ \lambda(t) : t \in [0, 1] \} \subset A$ be a continuous curve (that is, λ is continuous), with initial point z_0 . Put

$$T := \{ s \in [0, 1] : \lambda(t) \in E \text{ for every } t \in [0, s] \}.$$

Further, denote $\tau := \sup T$. Show that i) $T \neq \emptyset$ and if $s \in T$ then $\lambda(s)$ is an accumulation point of the E. ii) $\tau \in T$ iii) $\tau = 1$. Apply this to show that if E has an accumulation point in A, then $h(z) = 0 \quad \forall z \in A$. Hint: Draw an image!

2. Let f be an analytic function on $D_R(0)$, R > 0. Suppose further that f is not a constant function. Define $g: [0, R[\to \mathbb{R},$

$$g(r) = \max_{z \in cl(D_r(0))} |f(z)|.$$

Show that g is strictly increasing.

- 3. Let f be an analytic function on a domain A such that the function |f| has a local minimum on $z_0 \in A$ and $|f(z_0)| > 0$. Show that f is a constant function.
- 4. Let

$$f(z) = \frac{\sum_{k=1}^{\infty} k(z-\pi)^{k-1}}{z}.$$

Find the most general analytic extension of f.

5. Let

$$f(z) = \sum_{k=0}^{\infty} \frac{z^k}{2^{k+1}}$$
 and $g(z) = \sum_{k=0}^{\infty} \frac{(z-i)^k}{(2-i)^{k+1}}.$

Show that g is an analytic extension of f.

6. Study, when the Laurent-series

$$\sum_{n=-\infty}^{\infty} 2^{-|n|} (z+1)^n$$

converges and calculate the sum.