Introduction to Probability Theory II

Exercise 5, Autumn 2007

1. Box contains 10 balls. 2 of these are white and 3 are red. Experiment consists of picking 3 balls without replacement. Let X be number of white balls and Y number of red balls in the sample.
a) Derive the frequency function of the pair (X, Y).
b) Determine marginal distributions.
c) Determine conditional distributions.
2. Function f is the density function of a pair of random variables. Determine constant c, when
a) $f(x)=\left\{\begin{array}{l}c x y, \text { if } 0<x<1,0<y<1, \\ 0 \text { otherwise; }\end{array}\right.$
b) $f(x)=\left\{\begin{array}{l}c e^{-x-y}, \text { if } 0<x<y, \\ 0 \text { otherwise } .\end{array}\right.$
3. Let the density function f of a pair (X, Y) be as in 2 . Are X and Y independent.
4. Let the random variable X have uniform distribution on the interval $] 0,1[$ and let Y be a random variable whose distribution conditional on $X=x$ is uniform on the interval $] 0,1[$
a) Find the density function of Y and $\mathrm{E}(Y)$.
b) Find conditional density function $f_{X}(\cdot \mid Y=y)$ and conditional expected value $\mathrm{E}(X \mid Y=y)$.
5. Two points are placed on a line segment randomly and indepently.
a) Let $0<x<a$. Calculate the probability that the distance between points is greater than x.
b) Calculate expected valua of the distance.
6. n points are placed randomly and independently to the unit disk of the plain \mathbb{R}^{2}. Let R be the distance from origin of the point that is nearest to the origin. Determine the density function of the random variable R.
