Introduction to Probability Theory I

Exercise 4, Autumn 2008

- 1* We perform an experiment, where we throw an weighted tetrahedron whose sides have been numberd from 1 to 4. We observe which side falls against the table. Ratio of frequences that each side appears is seen to be 2:3:4:5. Construct a probability space that describes this experiment and find probabilities $p_k = P(\{\omega\})$ for each point $\omega \in \Omega$.
- 2. Let $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Define probabilities $p_k = P(\{k\})$ for each point $\omega \in \Omega$ such that
 - a) p_k is proportional to k,
 - b) p_k is proportional to $\ln k$.

Let $A = \{k \in \Omega \mid k > 6\}$ and $B = \{k \in \Omega \mid k = z^2 \text{ for some } z \in \mathbb{Z} \}$. Find the probabilities of A and B in each case.

- 3. Population consists of 818 people. 276 have been vaccinated against an epidemic. 69 people fall ill. Three of those, who were vaccinated.
 - a) Find the conditional probability of a person falling ill given that he is vaccinated.
 - b) Find the conditional probability of a person being vaccinated given that he did not fall ill.
- 4* 5 cards are drawn from a shuffled deck of cards. Find the conditional probability of getting at least one ace given that all cards are at least 10. (Ace is 14.)
- 5. Show that, if $P(A) = P(B) = \frac{3}{4}$, then $P(A|B) \ge \frac{2}{3}$.
- 6. 70% of email Johanna gets is spam. A spam filter classifies 75% of spam correctly. Find the probability that an arriwing email is correctly classified as spam.