Introduction to Probability Theory I

Exercise 8, Autumn 2008

1* Find the expectation E(X), if the probability density function of random variable X is f, and

a)
$$f(x) = \begin{cases} \frac{32}{3x^3}, & 2 < x < 4, \\ 0 & \text{otherwise;} \end{cases}$$

b) $f(x) = \frac{1}{2}e^{-|x|}, x \in \mathbb{R};$

- 2. Let X be the greatest of numbers that appears when a die is thrown four times. Find the expectation E(X).
- 3. Assume that X_1 , X_2 and X_3 are independent normally distributed random variables and that each has distribution N(1,3). Find

$$P\{X_1 + X_2 + X_3 > 0\}.$$

Let X₁, X₂, ..., X_n be measuring errors in repeated measurements. Assume that random variables X₁, X₂, ..., X_n are independent, normally distributed, each has distribution N(0, σ²) and

$$P(|X_i| < a) = 0,95$$
 for every $i = 1, 2, ..., n$.

Let \bar{X} be the average of X_i ie $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Find n such that

$$P\{|\bar{X}| < \frac{a}{100}\} = 0,952$$

- 5* a) Determine the distribution of random variable $2X^2 + 1$, if $X \sim N(0, 1)$.
 - b) Determine the distribution of random variable $4X^3 + 3$, if X follows geometric distribution with parameter $\frac{3}{4}$.
- 6. A ray of light originating from point (0,1) ∈ ℝ² forms angle Θ with x-axel. Assume that Θ is uniformly distributed on interval] − π/2, π/2[. Let X be the x coordinate of the intersection of light ray and x-axel. Find the probability function and probability density function of X. Does X have an expectation?