Introduction to Probability Theory I

Exercise 8, Autumn 2008

1* Find the expectation $\mathrm{E}(X)$, if the probability density function of random variable X is f, and
a) $f(x)= \begin{cases}\frac{32}{3 x^{3}}, & 2<x<4, \\ 0 & \text { otherwise; }\end{cases}$
b) $f(x)=\frac{1}{2} e^{-|x|}, x \in \mathbb{R}$;
2. Let X be the greatest of numbers that appears when a die is thrown four times. Find the expectation $\mathrm{E}(X)$.
3. Asssume that X_{1}, X_{2} and X_{3} are independent normally distributed random variables and that each has distribution $\mathrm{N}(1,3)$. Find

$$
P\left\{X_{1}+X_{2}+X_{3}>0\right\} .
$$

4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be measuring errors in repeated measurements. Assume that random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent, normally distributed, each has distribution $\mathrm{N}\left(0, \sigma^{2}\right)$ and

$$
P\left(\left|X_{i}\right|<a\right)=0,95 \text { for every } i=1,2, \ldots, n .
$$

Let \bar{X} be the average of X_{i} ie $\bar{X}=1 / n \sum_{i=1}^{n} X_{i}$. Find n such that

$$
P\left\{|\bar{X}|<\frac{a}{100}\right\}=0,95 ?
$$

5* a) Determine the distribution of random variable $2 X^{2}+1$, if $X \sim \mathrm{~N}(0,1)$.
b) Determine the distribution of random variable $4 X^{3}+3$, if X follows geometric distribution with parameter $\frac{3}{4}$.
6. A ray of light originating from point $(0,1) \in \mathbb{R}^{2}$ forms angle Θ with x axel. Assume that Θ is uniformly distributed on interval] $-\frac{\pi}{2}, \frac{\pi}{2}[$. Let X be the x coordinate of the intersection of light ray and x-axel. Find the probability function and probability density function of X. Does X have an expectation?

