Introduction to Probability Theory I

Exercise 8, Autumn 2009

- 1. Find the expectation E(X), if the probability density function of random variable X is f, and
 - a) $f(x) = \begin{cases} \frac{8}{x^3}, & x > 2, \\ 0 & \text{otherwise;} \end{cases}$
 - b) $f(x) = \frac{1}{2}e^{-|x|}, x \in \mathbb{R};$
 - c) $f(x) = \begin{cases} xe^{-\frac{1}{2}x^2}, & x > 0, \\ 0 & \text{otherwise.} \end{cases}$
- 2. Asssume that X_1 , X_2 and X_3 are independent normally distributed random variables and that each has distribution N(1,3). Find

$$P\{X_1 + X_2 + X_3 > 0\}.$$

3. Let X_1, X_2, \ldots, X_n be measuring errors in repeated measurements. Assume that random variables X_1, X_2, \ldots, X_n are independent, normally distributed, each has distribution $N(0, \sigma^2)$ and

$$P(|X_i| < a) = 0.95$$
 for every $i = 1, 2, ..., n$.

Let \bar{X} be the average of X_i ie $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Find n such that

$$P\{|\bar{X}| < \frac{a}{100}\} = 0,95?$$

- 4. Determine the distribution of random variable X-Y, if X and Y are independent and both follow exponential distribution with parameter λ , where $\lambda > 0$.
- 5. Find the distribution of random variable $2X^2+1$, if $X \sim N(0,1)$.
- 6. A ray of light originating from point $(0,1) \in \mathbb{R}^2$ forms angle Θ with x-axel. Assume that Θ is uniformly distributed on interval $]-\frac{\pi}{2},\frac{\pi}{2}[$. Let X be the x coordinate of the intersection of light ray and x-axel. Find the probability function and probability density function of X. Does X have an expectation?