Introduction to Probability Theory II

Exercise 1, Autumn 2009

1. Of 15 lottery tickets

- three win $10 €$ and
- four win $3 €$.

Rest of the tickets are empty. Let X be the "amount you win with two tickets". Find the expectation $E(X)$.
2. Consider n real numbers. The numbers are rounded to nearest integer. The errors in rounding are independent random variables that are uniformly distributed on interval] $-1 / 2,1 / 2$]. Let X be the error in arithmetic mean calculated using rounded numbers in stead of original. Find n such that

$$
P\{|X| \geq 0,01\}<0,05
$$

Use Chebyshev inequality to approximate the error.
3. Show that events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if and only if their indicators are independent random variables.
4. Show that events A and B are independent if and only if for $\operatorname{Cov}\left(\mathbf{1}_{A}, \mathbf{1}_{B}\right)=$ 0 , where $\mathbf{1}_{A}$ and $\mathbf{1}_{B}$ are the indicators of events A and B respectively.
5. Let X be a random variable that is uniformly distributed on interval $] 0,1[$. Find the expectations $\mathrm{E}\left(X^{2}\right)$ and $\mathrm{E}(\sin (2 \pi X))$.
6. Let X and Y be normally distributed random variables, whose distribution is $\mathrm{N}(0,1)$. Consider a triangle whose vertices are the origin and points $(X, 0)$ and $(0, Y)$. Find the expecctation of the area of this triangle.

