Introduction to Probability Theory II

Exercise 2, Autumn 2009

1. Let X and Y be independent random variables with means μ_{1} and μ_{2}, and variances σ_{1} and σ_{2}, respectively. Present, using these, following
a) $\mathrm{E}(a X+b Y)$, where a and b are constants;
b) $\mathrm{D}^{2}(a X+b Y)$, where a and b are constants;
c) $\mathrm{E}\left(\left(\frac{x-Y}{2}\right)^{2}\right)$.
2. Determine the p-fractile of random variable X for $p=0.5, p=0.75$ and $p=0.99$, when
a) $X \sim \operatorname{Tas}(0,1)$,
b) $X \sim \operatorname{Exp}(2)$,
c) $X \sim N\left(1 / 2^{1 / 4}\right)$.
3. Let $P(A)=p$. Determine the probability generating function of the indicator 1_{A} and use this to determine the probability generating function of distribution $\operatorname{Bin}(n, p)$.
4. Let X be a \mathbb{N}-valued random variable and G the probability generating function of X.
a) Calculate $G(0)$ and $G(1)$.
b) Express the probability that X is even using G.
5. Let X and Y be independent random variables. Determine the conditional distribution

$$
P\{X=k \mid X+Y=n\}, \text { for } k=0,1, \ldots, n,
$$

when
a) $X \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Bin}\left(n_{2}, p\right)$,
b) $X, Y \sim \operatorname{Geom}(p)$.
6. (Jenssen's inequality) Suppose that g is differentiable and its derivative is increasing. Show that, if random variables X and $g(X)$ have expected value, then

$$
g(\mathrm{E}(X)) \leq \mathrm{E}(g(X))
$$

Hint: Prove first following lemma:
If g^{\prime} is increasing, then

$$
g^{\prime}(y)(x-y) \leq g(x)-g(y)
$$

for every $x, y \in \mathbb{R}$.

