Introduction to Probability Theory II

Exercise 6, Autumn 2009

1. Buffon's needle problem Let the length of a needle be $2 k$ units, where $0<k<a$. The needle is dropped on a paper ruled with parallel lines $2 a$ units apart. Calculate the probability that the needle intersects one of the lines.
Hint: Let X be the distance from the centre of the needle to the closest line and Y the acute angle between the needle and the lines. Now X and Y are independent. Furthermore X is uniformly distributed on the interval $] 0, a[$ and Y is uniformly distributed on the interval $] 0, \pi[$.
2. Assume that the signal arriving from a satellite is $S=X+Y$, where X is result of an observation and Y is the interference. Assume that $X \Perp Y$, $X \sim \mathrm{~N}\left(\mu, \sigma_{1}^{2}\right)$ and $\left(Y \sim \mathrm{~N}\left(0, \sigma_{2}^{2}\right)\right)$. Find
a) $\operatorname{Corr}(S, X)$,
b) Distribution of X conditional on $S=s$.
(Hint: Present the random vector (X, S) as an affine transformation of the random vector (U, V), where $(U, V) \sim \mathrm{N}(0, I)$. Use this to find the density function of random vector $(X, S))$.
3. Let the density function of random vector (X, Y) be f, where

$$
f(x, y)=c e^{-x^{2}-2 y^{2}} \text { for every }(x, y) \in \mathbb{R}^{2}
$$

with $c>0$.
a) Determine c.
b) What is this distribution called?
c) Find $\mathrm{E}(X), \mathrm{E}(Y)$ and $\operatorname{Corr}(X, Y)$.
4. Let the density function of the random vector (X, Y) be f, when

$$
f(x, y)=c e^{-x^{2}-2 y^{2}} \text { kaikilla }(x, y) \in \mathbb{R}^{2}
$$

where c is a constant.
a) Determine the value of c.
b) Name the distribution.
c) Find $\mathrm{E}(X), \mathrm{E}(Y)$ and $\operatorname{Corr}(X, Y)$.
d) Assume that the distribution of random vector (X, Y) is a 2-dimensional normal distribution with density function

$$
f(x, y)=\frac{1}{2 \sqrt{2} \pi} \exp \left[-1 / 8\left(3 x^{2}+2 x y+3 y^{2}-14 x-10 y+19\right)\right] \text { for every }(x, y) \in \mathbb{R}^{2}
$$

Find the expected values for X and Y, and their covariance matrix. Hint: Find vector z_{0} and a matrix C such that the argument of exponential function is $-1 / 2\left(z-z_{0}\right)^{T} C^{-1}\left(z-z_{0}\right)$, if $z=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $z_{0}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$.
5. Two points are placed on a line segment of length a randomly and independent of each other.
a) Let $0<x<a$. Calculate the probability that the distance between points is greater than x.
b) Calculate expected valua of the distance.

