1. a) What is the relative error in the computation $\pi-\frac{22}{7}$ in a minicomputer that has four decimal digits of accuracy.
b) Criticize and recode the assigment statement $z \leftarrow \sqrt{x^{4}+4}-2$ assuming that z will sometimes be needeed for an x close to zero.
2. (a) If Newton's method is used on $f(x)=0.5-x+0.2 \sin x$, calculate the approximate value (four iterations) of the root.
(b) If the secant method is used on $f(x)=x^{5}+x^{3}+3$ and if $x_{n-2}=0$ and $x_{n-1}=1$, what is x_{n} ?
3. Construct a divided-difference diagram for the function $f(x)=e^{-x}$ given in the following table.

x	e^{-x}
0	1.00000000
1	0.36787945
4	0.01831564
10	0.00004540

Write out the Newton form of the interpolating polynomial $p_{3}(x)$.
4. Determine the lower triangular matrix \mathbf{L} and upper tringular matrix \mathbf{U} such that $\mathbf{A}=\mathbf{L U}$, when

$$
\mathbf{A}=\left(\begin{array}{lll}
6 & 7 & 4 \\
4 & 4 & 3 \\
2 & 1 & 1
\end{array}\right)
$$

5. a) Use Taylor series to represent the error of numerical integration in the basic trapezoid rule by an infinite series.
b) Calculate the error in the composite tapezoid rule.
c) If the composite trapezoid rule is to be used to compute

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

with an error at most $\frac{1}{2} \times 10^{-4}$, how many points should be used?

